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Abstract 

The stability of thick shell encapsulated bubbles is studied analytically.  3-D small 

perturbations are introduced to the spherical oscillations of a contrast agent bubble in response to 

a sinusoidal acoustic field with different amplitudes of excitation. The equations of the 

perturbation amplitudes are derived using asymptotic expansions and linear stability analysis is 

then applied to the resulting differential equations. The stability of the encapsulated 

microbubbles to nonspherical small perturbations is examined by solving an eigenvalue problem. 

The approach then identifies the fastest growing perturbations which could lead to the breakup of 

the encapsulated microbubble or contrast agent. 



 
1. INTRODUCTION 

Ultrasound contrast agents are encapsulated microbubbles which are usually formed with 

a high molecular weight gas core and a shell.1-3 A wide variety of materials have been used for 

the shell material such as oils, lipids, rigid polymers, and albumins. Ultrasound contrast agents 

were originally developed to enhance diagnostic imaging and have recently been incorporated 

into therapeutic applications.  

By resonating in an ultrasound beam, microbubbles are much more reflective than normal 

body tissues, thus they enhance the signals from a Doppler examination. Depending on the 

intensity of the transmitted ultrasound beam, bubbles behavior differently.4 At low intensity, the 

bubbles act as simple but powerful enhancers. At slightly higher intensity, the bubbles emit 

harmonics as they undergo non-linear oscillations. At even higher intensity, the bubbles are 

disrupted, emitting a strong transient echo. Understanding the behavior of the bubbles is 

important to get optimal imaging parameters and to reduce bioeffects such as hemolysis 5-7 and 

hemorrhage.8 

The capability of delivering drug to the targeted area makes therapeutic ultrasound 

contrast agents attractive to chemotherapy drug development because many chemotherapy drugs 

are toxic to normal tissues. For therapeutic ultrasound contrast agents, the drug is suspended 

within a highly viscous thick liquid shell,9 which stabilizes the encapsulated bubble and keeps it 

inert until the contrast agent reaches a specific target. With an appropriate acoustic amplitude 

and frequency, the encapsulated microbubble is excited and breaks up releasing the drugs when 

it is fragmented. A proper selection of shell material and thickness and an appropriate use of 

ultrasound would render the contrast agents powerful targeted drug delivery vehicles. 

Characterization and understanding of the fragmentation mechanism of a contrast agent is pivotal 

to its use for drug delivery.  



The ultrasonic fragmentation threshold for an encapsulated microbubble depends on the 

microbubble size, shell thickness, and shell and gas properties.10,11 Using a high intensity source 

and a large number of cycles would disrupt all types and sizes of contrast agent, but cannot be 

always applied safely in a clinical environment. Understanding of the forces involved in the 

breakup of a particular type of agent is therefore paramount to avoiding expensive and lengthy 

trial and error experiments, and to minimizing risk to patients. Presently however, the dynamic 

mechanisms involved in shell breakup are not well understood.  

The application of contrast agent to vectored drug delivery requires controlled 

fragmentation of microbubbles. The onset of bubble breakup is directly linked to the loss of 

spherical symmetry due to growing instabilities at the interface between two of the involved 

fluids: gas, viscous shell content, and host liquid. For an air bubble, stability of the spherical the 

shape has been theoretically studied some time back using linear stability analysis.1,12 For an 

encapsulated bubble, stability analysis is more complicated due to the presence of the thick shell 

layer. While several experimental studies have been conducted concerning the fragmentation of 

the contrast agent,13  less work has been published on  theoretical modeling. The present study 

will address the shape stability of an encapsulated bubble with finite thickness subject to 

irrotational perturbations using linear stability analysis.  

 

2. FORMULATION OF THE PROBLEM 

We consider a single spherical bubble encapsulated in a thick shell of a viscous liquid. 

We define, as shown in Figure 1, the dimensional‡ inner and outer radius of the bubble shell as 

*
1R  and 

2

*R  respectively. The densities and viscosities in the viscous shell (inner domain) are 
1

*ρ  

                                                 
‡‡ We will use stars for the dimensional quantities, to distinguish from non-starred characters for normalized quantities.  This 
will simplify the presentation later. 



and 
1

*μ , and in the surrounding host liquid (outer domain) they are 
2

*ρ  and
2

*μ .  Both liquids in 

the inner and outer domain are assumed incompressible, while the gas inside the bubble is 

compressible. The surface tension coefficients between each two fluids at the interfaces 1 and 2 

are 
1

*γ  and 
2

*γ  at *
1R and 

2

*R respectively.  

In this study the wavelength of the imposed acoustic field in the gaseous bubble core is 

two orders of magnitude larger than the bubble radius and in this perturbation study the resulting 

velocities in the gas are very small compared to the sound speed.   Therefore, the pressure, *
g

p  , 

inside the gas core is assumed to be uniform and to follow a polytropic compression law. The 

inner domain pressures at the two interfaces at * *
1r R= and 

2

* *r R= are 
1

*p  and 
2

*p  respectively. 

The outer domain pressure at Interface 2 at 
2

* *r R=  is
3

*p . The imposed pressure far from the 

bubble is P∞ (t).  

To non-dimensionalize the problem, we use the initial outer radius 
20

*R  as the length scale  

and T* as the time scale.  (T* could be selected as the characteristic period of the acoustic field 

driving pressure of amplitude Pa and period 1/f), and the outer domain liquid density, *
2ρ , as the 

density scale. Then the velocity scale is  

*
* 20

*

RU
T

= .      (1) 

The non-dimensional radial coordinates and times can then be defined as: 

*

*
20

rr
R

= ,  
*Tt

T
= ,     (2) 

and the non-dimensional inner and outer radii are 

* *
1 2

1 2* *
20 20

,  R RR R
R R

= = ,     (3) 



The non-dimensional densities are 

*
1

1 *
2

ρρ
ρ

= , 2 1,ρ =      (4) 

and the non-dimensional pressures are 

* **

* *2 * *2 * *2
2 2 2

, ,g
g

p Ppp p P
U U Uρ ρ ρ

∞
∞= = = .    (5) 

We will use these non-dimensional quantities below unless specified. 

Both inner and outer domain liquids will be considered viscous and will be solved using the 

continuity and momentum conservation equations. 

 

3. DYNAMICS EQUATION OF A THICK-SHELLED SPHERICAL 

MICROBUBBLE 

Conservation of mass and incompressibility in the outer domain are easy to express due 

to the spherical symmetry of the problem and lead to the following expression for the radial 

velocity, 2ru , in the host liquid: 

2
2 2

2 2r
R Ru

r
=
&

.      (6) 

The same applies to the inner problem, i.e. to the thick shell medium, to give: 

2
1 1

1 2r
R Ru

r
=
&

.      (7) 

Equality of the velocities at the interface between the shell and the host liquid, 

 2 2 1 2( ) ( )r ru R u R= , (8) 

leads to: 



2
1

2 1 2
2

RR R
R

=& & .      (9) 

The momentum equations applied to the inner and outer domain are:  

( )2
1 2

1

1 1 ,
R

r r
r r

e

u u pu r u
t r r r r r

ρ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
   (10) 

( )2
2 2

2

1 1 ,
R

r r
r r

e

u u pu r u
t r r r r r

ρ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
   (11) 

with 

* * * * * *
1 2 20 1 2 2 20 2 R , Re eU R U Rρ μ ρ μ= =     (12) 

where 1R e  and  2R e  are the inner and outer domains Reynolds numbers. Substituting (7) into (10) 

and (6) into (11) and integrating equation (10) from 1 2R R→  and equation (11) from 2R →∞ , 

we obtain:  

2 2

1 2 2 2 2 1 1 1 1 1
3 3
2 2

R R R p R R R pρ ρ
⎛ ⎞ ⎛ ⎞

+ − = + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

&& & && & ,   (13) 

2

2 2 2 2 3
3
2

R R R p Pρ ∞

⎛ ⎞
+ = −⎜ ⎟⎜ ⎟

⎝ ⎠
&& & ,    (14) 

where P∞  is the imposed acoustic pressure, and the double dots denote the second order time 

derivative 
2

2

d
dt

. The normal stress balance on the inner and outer interfaces gives: 

1

1 1
1 1

1 1 ( )
R

T
v g

e e r R

p p p
W

=

= + − + ⋅ ∇ +∇ ⋅n u u nC ,   (15) 

2

3 2 2
2 2 1

1 1 1( ) ( )
R R

T

e e e r R

p p
W

=

− = − + − ⋅ ∇ +∇ ⋅n u u nC ,  (16) 

where the weber numbers  We1 and We2 are defined as: 



 * 2 * 2
1 2 20 1 2 2 20 2,e eW U R W U Rρ γ ρ γ= = . (17) 

n is the unit vector normal to the inner or outer surface, and  

 , ( 1, 2)i i i= ∇⋅ =nC  (18) 

are the curvatures of the inner or outer surface.  

Using (6) and (7) equations (15) and (16) become:  

1
1

1 1 1 1

2 4
Rv g

e e

Rp p p
W R R

⋅
= + − − ,    (19) 

2
3 2

1 2 2 1 2

2 1 14
R Re e e

Rp p
W R R

⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠

&
 .   (20) 

Substituting (19) and (20) into (13) and (14)  2p  can be cancelled and we obtain 

2
2 42

2 2 1 1 1 2 1 2 2 1 2 1
1

3

2 2 2

1 1 2 2 2 2 1 2 1

3 1(1 ) (1 ) (2 / ( / ) )
2 2

2 2 1 14 4 1 .
R Rv g

e e e e

RR R R R R R R R
R

R R Rp p P
W R W R R R R

ρ ρ ρ ρ

∞

⎛ ⎞
− + + − + −⎜ ⎟

⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= + − − + − − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

&& & &

& &
  (21) 

A similar differential equation is obtained for R1, using Equation (9). 

 

When the liquid inside the shell layer is the same as the host liquid, i.e. when the 

1 1 2 21, R R  and 1/ W 0e e eρ = = = , the above equation (21) reduces to the conventional Rayleigh-

Plesset equation. 

 

4. HARMONIC PERTURBATIONS OF THE SPHERICAL SOLUTION 

Equation (21) describes the spherical oscillations of the shelled bubble. To investigate 

how stable this spherical motion is, 3-D small perturbations can be introduced to the solution and 



the stability can be determined by investigating whether these perturbations grow with time or 

not. We consider such perturbations below.  

 

4.1 Flow Solution in the Host Liquid  
Let us consider harmonic nonspherical small perturbations of the outer microbubble such 

that the nondimensional equation of the surface is modified from 2 ( )r R t=  to 

,0)(22 =−−= m
nnYbtRrS ε     )1(Obn = , 1<<ε ,     (22) 

where m
nY  are spherical harmonic functions and 0n ≠ .  

The microbubble volume is unchanged after the perturbation because: 

22 2

0 0 0

2 3
20 0

2 3 2 2
2 20 0

3 22 22
2 0 0

sin

1 ( ) sin
3
1 ( 3 )sin ( )
3
4 3 (cos ) (cos ) ( ),

3

m
n nR b Y

m im
n n

m im
n n

im m
n n

V r dr d d

R b P e d d

R R b P e d d O

R R b e d P d O

π π ε

π π ϕ

π π ϕ

π πϕ

θ θ ϕ

ε θ θ ϕ

ε θ θ ϕ ε

π ε ϕ θ θ ε

+
=

= +

= + +

= − +

∫ ∫ ∫

∫ ∫

∫ ∫

∫ ∫

    (23) 

where (cos )m
nP θ are Legendre polynomials. For 0n ≠ , the orthogonality of the Legendre 

polynomials gives: 

0
(cos ) (cos ) 0m

nP d
π

θ θ =∫ .     (24) 

Thus, up to order ε , the contribution of the perturbation to the microbubbles volume, (23), is 

zero. 

To investigate the stability of the oscillations, one needs to investigate whether the added 

perturbations will grow or decay over time. Figure 2 illustrates the shapes that will result from 

instability of the various small perturbation modes.  These illustrate only for visualization, the 

shapes long after asymptotic expansions are no longer valid. With mode n=1, a jet can be 



formed if instability develops, with mode n=2, the bubble surface becomes ellipsoidal and when 

the perturbation grows, the bubble tends to split into two smaller bubbles. With modes n=3 or 4, 

the perturbations could result in break up of the bubble into 3 or 4 smaller bubbles. 

 The corresponding perturbed velocity potential in the outer domain can be written as:  

'
2 2 2φ εφΦ = +  ,       (25) 

where 2φ  is the unperturbed spherical velocity potential, and '
2φ  is the nonspherical small 

perturbation of this velocity potential. Both are potential and satisfy the Laplace equation. The 

harmonic expansion of  '
2φ  can be obtained by considering the kinematic boundary condition at 

the interface between the shell and the host liquid. This can be written:   

2

2 2
2 20

0,    with 
S

dS S S
dt t =

∂
= + ⋅∇ = = ∇Φ

∂
U U .   (26) 

Using (22) and (25), we have: 2
2

m
n n

S R b Y
t

ε∂
= − −

∂
& ,     (27) 

)(

sin

1

2

2

2
02

2
ε

θ
ε

ε

ϕ

θ O

Y
R

b

Y
R
bS

m
n

n

m
n

n
S

+

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂−

∂−=∇
=

   (28) 

and  

 )(

sin

2

'
2

2

'
2

2

2
2

2'
22

0

2

2
ε

ϕ
φ

θ
ε

θ
φε

φφεφ

O

R

R

Yb
rrr

Rr

m
nn

S
+

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂
∂

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

=

=

=
U , (29) 

Substituting in equation (26) we obtain: 



2 2

' 2
22 2 22 2 ( ) 0m m

n n n n
r R r R

R b Y b Y O
r r r
φ φ φε ε

= =

⎛ ⎞⎛ ⎞∂ ∂ ∂
⎜ ⎟− + + − + + + =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 . (30) 

Separating the ε  order, we have 

2

2
2 0

R

R
r
φ∂⎛ ⎞

− + =⎜ ⎟∂⎝ ⎠
& ,      (31) 

  

2

' 2
2 2

2 0m m
n n n n

r R

b Y b Y
r r
φ φ

=

⎛ ⎞∂ ∂
⎜ ⎟− + + =
⎜ ⎟∂ ∂⎝ ⎠

.    (32) 

The far field boundary conditions can also be written 

'
2 2,  =0, =0r φ φ→∞ .      (33) 

The solution of the above equations  (31) and (32) with boundary conditions (33) lead to the 

following spherical and perturbed velocity potential of the outer domain: 

12
2 2 2

2 2 22
1

n m
n

n n
YR R Rb R b R

r r n
ε

+⎛ ⎞⎛ ⎞Φ = − − +⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

&
&&  .  (34) 

 

4.2 Flow Solution in the Microbubble Shell  

In the microbubble shell the velocity potential is 1Φ , and the kinematical condition on the 

interface shell – host liquid can be written as in (26): 

 
1

1
1 1

0

0    with 
S

S S
t =

∂
+ ⋅∇ = = ∇Φ

∂
U U ,     (35) 

and  

2 2
1 20 0S S= =

Φ = Φ .      (36) 

Using the same technique as in the previous section for 2Φ , we obtain the solution of 1Φ : 



12
2 2 2

1 2 22
1

n m
n

n n
YR R Rb R b R

r r n
ε

+⎛ ⎞⎛ ⎞Φ = − − +⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

&
&& .   (37) 

The microbubble gaseous surface equation can be written as:  

1 1( ) 0k
l lS r R t a Yε= − − = , )1(Oal =  1<<ε  ,  (38) 

on which the following kinematic boundary condition applies: 

1

1
1 1

0

0
S

S S
t =

∂
+∇Φ ⋅∇ =

∂
.     (39) 

By substituting equation (37) to (39) and separating the order of each term, we obtain: 

( ) ( )1 1
2 2 2 1 1 12 2n nm k

n n n l l lb R b R R Y a R a R R Y+ +⎛ ⎞ ⎛ ⎞
+ = +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
&& & & .   (40) 

Due to the orthogonality of the harmonic functions, for equation (40) to be true, we need when 

n l=  and m k= : 

( ) ( )1 1
2 2 2 1 1 12 2n n

n n n nb R b R R a R a R R+ +⎛ ⎞ ⎛ ⎞
+ = +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
&& & & ,   (41) 

And when n l≠  or m k≠ , then we have: 

( )

( )

2
2 2 2

2
1 1 1

2 0; . . 0,

2 0; . . 0.

n n n

l l l

db R b R i e b R
dt
da R a R i e a R
dt

+ = =

+ = =

&&

& &

,    (42) 

If 1R  and 2R are periodic solutions, so are la  and nb , then the perturbations do not grow or decay 

over the cycles. This kind of perturbation mode does not affect the stability of the oscillations. 

Therefore, we will consider the perturbations of the form n l=  and m k= only, and from 

equations (42), we can rewrite  equation (37) as: 

12
1 1 1

1 1 12
1

n
m

n n n
R R Ra R a R Y

r n r
ε +⎛ ⎞⎛ ⎞Φ = − − + ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

&
& & .   (43) 



 

4.3 Equations for the oscillations 
Application of the Bernoulli equation in the inner and outer domain between interfaces 1 

and 2 and then interface 2 and infinity gives: 

( ) ( )

( )

2 1

2

2 21 2 1 1
1 1

1 10 0

2 32
2

2 20

1 1 ,
2 2

1 .
2

S S

S

P P
t t

P P
t

ρ ρ

ρ ρ

= =

∞

=

⎡ ⎤ ⎡ ⎤∂Φ ∂Φ
+ ∇Φ + = + ∇Φ +⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

⎡ ⎤∂Φ
+ ∇Φ + =⎢ ⎥∂⎣ ⎦

   (44) 

Also, application of the normal stress balances on the inner and outer shell surfaces gives: 

1

2

1 1
1 1 0

3 2 2
2 2 1 0

1 1 ( ) ,
R

1 1 1( ) ( ) .
R R

T
v g

e e S

T

e e e S

P p P
W

P P
W

=

=

= + − + ⋅ ∇ +∇ ⋅

− = − + − ⋅ ∇ +∇ ⋅

n U U n

n U U n

C

C
   (45) 

Upon substitution using equation (34) and (43) into equations(44) and (45), canceling 1P , 2P  and 

3P , and separating the orders in ε , we re-obtain equation (21) and  

1

1 1
2 1 1 1 2

2 1 1 1

1 1
1 3 3

1 1 1 1 1

1

1 1 11
2 1

1 2

2( 2)(2 1)( ) 3
R

4( 1)( 1)1 ( 1)( 1)( 2)( 1)
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3 2 2( ) ( 1)
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n n
e

n
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n
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ρ ρ ρ ρ

ρ

ρ ρ

+

+

⎛ ⎞⎛ ⎞⎛ ⎞ + +⎜ ⎟⎜ ⎟− + = − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞

− +− + +⎜ ⎟+ − − −⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞+ +
− − + +⎜ ⎟

⎝ ⎠

&
&& &

&&&
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2 1 2

1 2 1 1 2

2 1 2 2
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1 2 1 2 2 1 1 2

3 2(1 ( ) )

3( ) 1 1 2( 1)( 2)( )
R R

( 1)( ) 4( 1)( 1)1 ( 1)( 1)( 2) 1 1( ) .
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n

n n n

n
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n
e e e
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R R R R
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R R R
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+⎛ ⎞⎛ ⎞ +⎜ ⎟− −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞

− + +⎜ ⎟− + −⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞− − − +− + +

+ − − −⎜ ⎟
⎝ ⎠

& & &&
&

&
&

&& &

    (46) 

and  



2

1 1 1 2

1 2 2

2 2
n

n n
n n

a R a R R Rb b
R R R

+
⎛ ⎞+

= −⎜ ⎟
⎝ ⎠

& &&& .    (47) 

The natural frequency of this  system can be shown to be: 
14 1

2 1 1 1
2 1 13

1 1 2 2 2

W1 ( 1)( 1)( 2) 1 ( )
W W

n n

e
n

e e

R Rn n n
R R R

ω ρ ρ ρ

−+ +⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞− + + ⎜ ⎟⎢ ⎥= + − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠
  ,            (48) 

which includes viscosity and surface tension effects. It is trivial to verify that by setting 2 1ρ ρ=  

and removing the outer surface, eq. (46)  recovers the well-known single bubble shape oscillation 

equation. 

11 1
2 3 3

1 1 1 1 1 1 1 1

4( 1)2( 1)( 2) 1 ( 1)( 2)3 ( 1)
R W Rn n n

e e e

R n Rn n R n na a n a
R R R R R

⎛ ⎞ ⎛ ⎞
++ + + +⎜ ⎟ ⎜ ⎟= − + + − − −

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
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& &&&
&& & ,            (49) 

which has as natural frequency:   

 2
n 3

1 1

1 ( 1)( 1)( 2)
We

n n n
R

ω − + +
=  .                                         (50) 

 

4.4 EIGENVALUE PROBLEM 

After the spherical oscillations according to equation (21)  reach a steady periodic state, 

the coefficients in equations (46), (47) are periodic functions of time and, therefore, Floquet 

theory applies,14 according to which the solution at the end of a cycle 
0 1( , , )n n n t ta a b = +& is linearly 

related to the value at the beginning of a cycle 
0

( , , )n n n t ta a b =& . 

Let’s define  

( )
n

n

n

a
t a

b

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

X & .      (51) 

To determine the stability of the oscillations, we need to find le value ofλ such that  

0 0( 1) ( )t tλ+ =X X       (52) 



for non-zero 0( )tX . If 1λ > , the oscillations will grow in time and are unstable, otherwise the 

oscillations are stable. Suppose we have 

1

0 2

3

( )t
α
α
α

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

X  ,      (53) 

where 1 2 3, ,α α α are constants, and let us introduce a set of orthogonal 3-D base vectors 

iV (i=1,2,3),: 

1 2 3
0 0 0

1 0 0
( ) 0 , ( ) 1 , ( ) 0 ,

0 0 1
t t t

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

V V V    (54) 

then  

3

0 0
1

( ) ( )i
i

i
t tα

=

=∑X V .      (55) 

Since 0( 1)t +X  is linearly related to 0( )tX , we have 

3

0 0
1

( 1) ( 1)i
i

i

t tα
=

+ = +∑X V ,     (56) 

where 0( 1)i t +V (i=1,2,3), is the value of 

0 1

n

n

n t t

a
a
b

= +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

&  with the initial condition being 0( )i tV . 

Equation (52) becomes: 

3

0 0
1

( 1) ( )i
i

i
t tα λ

=

+ =∑ V X .     (57) 

Equation (57) can be written in matrix form as:  

0 0( ) ( )t tλ=MX X  .      (58) 



Where the ith column of the monodromy M  is equal to 0( 1)i t +V . For equation (58) to have a 

non-zero solution of 0( )tX , the following equation should be satisfied: 

0λ− =M I .       (59) 

Where  denotes the determinant of a matrix. The determination of the stability of the 

oscillation becomes an eigenvalue problem of the matrix, M . If the maximum modulus of the 

eigenvalues is greater than 1, the oscillations are unstable, otherwise the oscillations are stable.  

 

5. EXAMPLE RESULTS 
 
5.1 Water Shell and Water Host Liquid 

5.1.1 Fictitious membrane 

Consider an air bubble oscillating in water, driven by acoustic pressure of frequency 

2.5 f MHz= .  The initial inner and outer radius of the bubble are 10 201.2 ,  1.7R m R mμ μ= = . It 

is noted that according to eq.(50), the excitation frequency is smaller than the natural frequency 

of the system, since the natural frequency of the single bubble is of 6.9 MHz for mode n=2 and 

the natural frequency will be higher for higher modes.  The equations shown in Section 4.4 are 

solved for different values of the driving pressure, Pa, and the modulus of the resulting 

eigenvalues are shown in Figure 3 for the 2,3,  and 4n =  surface modes. When the eigenvalues 

are all real, there are three values of the modulus of the eigenvalues. When two of the 

eigenvalues are complex, their moduli are equal resulting only in only two values of the modulus 

for 3 eigenvalues. When the amplitude of the driving pressure exceeds 0.155aP MPa= , an 

eigenvalue of modulus larger than 1 occurs, which indicates that the oscillation becomes 

unstable.  



Figure 4 shows examples of the magnitudes versus normalized time of the an (inner shell 

radius) and bn (outer shell radius) perturbations for a stable oscillation when the driving pressure 

is aP =0.1Mpa for mode n=2. Figure 4a starts from ( , , ) (1,0,0)n n na a b =&  (i.e. initial perturbation 

of the inner shell surface) and Figure 4b starts from ( , , ) (0,0,1)n n na a b =& (i.e. initial perturbation 

of the outer shell surface). In both cases, the amplitude of the deformation of the outer surface 

oscillates with a constant magnitude, while the amplitude of the deformation of the inner surface 

stays the same or decays to 0 so that the oscillations are stable.  

For a higher magnitude of the driving pressure Pa=0.2Mpa resulting in unstable behavior, 

the magnitudes of the perturbations are shown in Figure 5. With the initial conditions  

( , , ) (1,0,0)n n na a b =& , (i.e. initial perturbation of the inner shell surface), as shown in the Figure 

5(a), the perturbations on both surfaces keep growing from cycle to cycle and deviations from 

the spherical shape are unstable. However, starting from ( , , ) (0,0,1)n n na a b =& , (i.e. initial 

perturbation of the outer shell surface), s shown in the Figure 5(b), the perturbations are see in 

the right side of the figure to be more stable. The inner surface remains unperturbed, while the 

outer surface oscillates with a constant amplitude.  

It can be proven that when the liquids in the inner and outer domain are the same, one of 

the eigenvalues is always equal 1. 

 

5.1.2 Presence of a membrane 

In the above pure water case, * *
1 2 1 2 2,  and 0ρ ρ μ μ γ= = = . Suppose there was a 

membrane on the outer surface, then we would have * *
1 2 1 2 2,  and 0ρ ρ μ μ γ= = ≠ . The 

maximum and minimum eigenvalues with mode n=2 of this kind of problems are shown in 

Figure 6(a) and (b) respectively for different surface tension 2 1 1/100,  /10,γ γ γ=  



1 1/15,  and / 2γ γ , and are compared with the case of pure water. The figure shows that for small 

pressure amplitudes (Pa<0.04MPa), the membrane stabilizes the oscillations as the maximum 

eigenvalues are decreased.  This effect is stronger and covers a larger range of excitation 

pressures for smaller surface tensions.  

Another interesting case is when the viscosity in the outer domain is different than that of 

the shell liquid. The maximum and minimum eigenvalues with mode n=2 of this kind of 

problems are shown in Figure 7 (a) and (b) respectively for different viscosity.  The figure shows 

that by increasing the viscosity in the outer domain, the maximum eigenvalues are decreased for 

the smaller amplitude Pa, which indicates the oscillations are stabilized.  The opposite is true 

when the outer domain viscosity is lower that that of the shell, while the densities are the same. 

 
5.2 TRIACETIN-SHELLED BUBBLE 

For a triacetin-shelled bubble, the highest moduli of the eigenvalues for modes n=1 to 

n=7 are shown in Figure 8 for 2.5f MHz=  when the shell thickness is 0.5 mμ  and for 

10 201.2  and 1.7R m R mμ μ= = . 10 201.2 ,  1.7R m R mμ μ= = . For the triacetin-shelled bubble case, 

the excitation frequency is also smaller than the natural frequency of the system according to eq. 

(48).  The natural frequency of the triacetin-shelled bubble is of 14.2 MHz for mode n=2. The 

non-dimensional parameters are 1R 0.26,e =  2R 7.23e = , 1 3.84,eW =  2 0.51,eW =  0 0 0.29,d R =  

and 1 2 1.1ρ ρ = . In the figure the pressures are normalized by 2 2
2 20R fρ . It can be seen that for 

normalized pressures of amplitude higher than 75, the largest eigenvalues appear at mode n=4, 

which indicates that n=4 is the most unstable mode and the bubble will probably break up into 4 

smaller bubbles under this condition. For lower pressures, the most unstable modes are n=5 or 

n=6.  



To further illustrate when the unstable growth is due to harmonic or to subharmonic 

resonance, the three real eigenvalues for modes n=1 and n=2 are shown in Figure 9(a) and (b) 

respectively. It is seen that the perturbation becomes unstable when the non-dimensional 

pressure is larger than 80. It is known that when the minimum of the real part of the eigenvalues 

of the monodromy matrix is below -1, subharmonic resonance occurs whereas harmonic 

resonance prevails when the maximum real part of an eigenvalue becomes larger than one. 

Figure 10 shows examples of a growing perturbation for mode n=1 and n=2 at non-dimensional 

pressure 2 2
2 20 83R fρ =  (f=2.5MHz, Pa=1.5MPa) which will lead to a breakup. The n=1 case 

shows that the perturbation grows unstable at a subharmonic resonance, i.e. the oscillation 

frequency is smaller than the excitation frequency, while the n=2 case shows a harmonic 

resonance, i.e. the oscillation frequency is equal or larger than the excitation frequency. 

The bubble shapes following instability and right prior to breakup are shown in Figure 11 

for n=1,2,3,4 respectively. The validity of the approach is obviously violated by then.  For mode 

n=1, the liquid in the shell layer moves from an side of the layer to the other leaving one side 

very thin. This is what we observed also in the 3D simulations with large perturbations.15  The 

two interfaces become eccentric and a jet initiates on the inner interface while the very thin layer 

on the other side nears breaking.  

For a triacetin-shelled bubble, the liquid in the shell layer is heavier than the surrounding 

liquid with the density ratio of 1.1. Figure 12 shows that if the inner layer liquid was lighter than 

the surrounding liquid, the bubble would become more stable as the eigenvalues become smaller 

when the density ratio is reduced. 

To investigate the effect of the viscosity, we calculate the eigenvalues of the oscillation 

with 1 2R 2.23,R 0.26e e= =  so that the inner layer liquid is less viscous than the outer layer liquid 

which is opposite to the triacetin-shelled bubble. All other non-dimensional parameters are kept 



the same. The eigenvalues for n=2 are shown in Figure 13. In this case, the bubbles are more 

unstable. Furthermore, as shown in Figure 14, the most unstable mode is n=1 compared to the 

most unstable mode n=4~6 in Figure 8. Thus the bubble will form a jet on one end and break up 

on the other end. 

 

6. CONCLUSIONS 

The stability of the spherical oscillations of thick-shelled microbubbles or contrast agents 

were examined using a perturbation theory with harmonic nonspherical small perturbations and 

solving an eigenvalue problem. The thick-shelled microbubble dynamic equations were derived 

for the spherical and axisymmetric non-spherical modes. The fastest growing modes were 

identified by observing the eigenvalues with the largest magnitude. Limits for stability for 

varying insonification pressure amplitudes were obtained. For a triacetin bubble, where the 

viscosity in the inner layer is higher than the surrounding liquid, n=1 is the most stable mode 

while for a bubble with less viscous shell, n=1 is the most unstable mode.  
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Figure 1. Sketch of the domain for the 1-D spherical thick-shell bubble model. 
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Figure 2. Illustration of the microbubble shape with the existence (small perturbation -left) and growth 

of perturbations (right) beyond  validity of the asymptotic expansions approach for  various orders 1 to 
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Figure 3. Moduli of the eigenvalues for bubble oscillating in water. Driving acoustic pressure of 

frequency f=2.5MHz.  The initial inner and outer radius of the bubble are 

10 201.2  and 1.7R m R mμ μ= = . 
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Figure 4.  Stable case of a bubble oscillating in water. Variations of an (inner shell radius 

perturbation) and bn (outer shell radius perturbation) when the driving pressure was aP =0.1Mpa and 

the mode number is n=2. (a) Perturbation starts from ( , , ) (1,0,0)n n na a b =&  and (b) starts from 

( , , ) (0,0,1)n n na a b =& . The initial inner and outer radius of the bubble are 10 201.2  and 1.7R m R mμ μ= = . 
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Figure 5. Unstable case of a bubble oscillating in water. Variations of an (inner shell radius 

perturbation) and bn (outer shell radius perturbation) when the driving pressure was aP =0.2Mpa and 

the mode number is n=2. (a) Perturbation starts from ( , , ) (1,0,0)n n na a b =&  and (b) starts from 

( , , ) (0,0,1)n n na a b =& . The initial inner and outer radius of the bubble are 10 201.2  and 1.7R m R mμ μ= = . 
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Figure 6. Influence of the excitation pressure on the eigenvalues of the perturbation for a water shell 

in water host liquid with a membrane between the two. ( a) maximum modulus of eigenvalue (b) 

minimum modulus of eigenvalue for * *
1 2 1 2 2 1 1 1 1,  and 0,  /100,  /10,  /15,  and / 2ρ ρ μ μ γ γ γ γ γ= = = . 
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Figure 7. Influence of the excitation pressure on the eigenvalues of the perturbation for a water shell 

in a host liquid with various viscosities. ( a) maximum modulus of eigenvalue (b) minimum modulus of 

eigenvalue for * *
1 2 2 1 2 21 2 2 2 2, 0 and  /10,  / 5,  / 2,  ,  2 ,and 5ρ ρ γ μ μ μ μ μ μ μ= = = . 
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Figure 8.Modulus of eigenvalues of the oscillation of triacetin-shelled bubble driven by pressure at 

f=2.5MHz, initial shell thickness=0.5 mμ .  The pressures are normalized by 2 2
2 20R fρ . 



 
 

Figure 9. Real eigenvalues of the oscillation of triacetin-shelled bubble driven by pressure at 

f=2.5MHz, initial shell thickness=0.5 mμ (a) mode n=1 (b) mode n=2.  The pressures are normalized by 

2 2
2 20R fρ .  
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Figure 10. Growing perturbations for an oscillating triacetin-shelled bubble. (a) mode  n=1, (b) mode  

n=2 for f=2.5MHz, Pa=1.5Mpa, n=2 

(a) (b) 



 
 

  

  

Figure 11. Bubble shapes before breaking up with perturbation mode n=1,2,3,4 respectively. 

f=2.5MHz, Pa=1.5Mpa  



 

Figure 12. Effect of the density ratio on the stability of mode 2. f=2.5MHz Re1=0.26, Re2=2.23. 
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Figure 13.  Effect of viscosities on the eigenvalues for n=2. f=2.5MHz, density ratio=1.1. 
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Figure 14. Effect of reducing the viscosity of the liquid in the shell layer Re1=2.23,Re2=0.26 f=2.5MHz, 

density ratio=1.1. 

 
 

 
 


